|
|
施薇 |
讲师,硕士生导师 |
联系方式:shiwei@shu.edu.cn |
l 个人简介
2011年获得华中农业大学农学学士和华中科技大学理学学士;2015年-2017年在美国约翰霍普金斯大学进行联合培养;2017年获得电子科技大学工学博士,2019年获得中国电子学会优秀博士学位论文;2018年-2021年在中国科学院化学研究所进行博士后研究,获得博士后创新人才支持计划。2022年入职1066vip威尼斯。主要从事有机发光二极管(OLED)以及有机场效应晶体管(OFET)器件的界面修饰以及基于OFET的生物及气体传感器的研究。共发表SCI论文40余篇,其中包括Advanced Materials,Chemical Review,Advanced Optical Materials(封面文章),ACS Applied Materials & Interfaces,Sensors and Actuators B: Chemical等论文,引用900余次。
l 论文
[1] W. Shi, Q. Li, Y. Zhang, et al. Enabling the aqueous solution sensing of skin-conformable organic field-effect transistor using an amphiphilic molecule, Applied Materials Today, 2022, 26, 101275.
[2] W. Shi, Y. Guo, Y. Liu. When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things, Advanced Materials, 2020, 32, 1901493.
[3] Y. Xu, W. Shi*, et al. High-performance inverted tandem OLEDs with the charge generation layer based on MoOx and Ag doped planar heterojunction, Advanced Optical Materials, 2022, 10, 2200984.
[4] Y. Xu, W. Shi*, et al. Physical properties of ultrathin Al2O3/HfO2 composite film by atomic layer deposition and the application in TFT, ACS Applied Materials & Interfaces, 2023, 15, 16874.
[5] H. Li, W. Shi, J. Song, et al. Chemical and biomolecule sensing with organic field-effect transistors, Chemical Reviews, 2019, 119, 3-35.
[6] W. Shi, J. Yu, H. E. Katz. Sensitive and selective pentacene-guanine field-effect transistor sensing of nitrogen dioxide and interferent vapor analytes. Sensors and Actuators B: Chemical, 2018, 284, 940-948.
[7] W. Shi, Y. Zheng, A. D. Taylor, et al. Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers. Applied Physics Letters, 2017, 111, 043301.
[8] W. Shi, X. Yu, Y. Zheng, et al. DNA based chemical sensor for the detection of nitrogen dioxide enabled by organic field-effect transistor. Sensors and Actuators B: Chemical, 2016, 222, 1003-1011.
[9] W. Shi, Y. Zheng, J. Yu, et al. Mobility enhancement of organic field-effect transistor based on guanine trap-neutralizing layer. Applied Physics Letters, 2016, 109, 143301.
[10] W. Shi, S. Han, W. Huang, et al. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating. Applied Physics Letters 2015, 106, 043303.
[11] W. Shi, J. Yu, W. Huang, et al. Performance improvement of a pentacene organic field-effect transistor through a DNA interlayer. Journal of Physics D: Applied Physics, 2014, 47, 205402.
[12] W. Shi, J. Yu, W. Huang, et al. Performance enhancement of poly (3-hexylthiophene) organic field-effect transistor by inserting poly (methylmethacrylate) buffer layer. Applied Physics Letters, 2013, 102, 111607.
[13] W. Shi, Y. Zheng, J. Yu, Polymer Dielectric in Organic Field‐Effect Transistor/Properties and Applications of Polymer Dielectrics, InTech [Book Chapter], 2017.
[14] Q. Li, Y. Ran, W. Shi, et al. High-performance near-infrared polymeric phototransistors realized by combining cross-linked polymeric semiconductors and bulk heterojunction bilayer structures. Applied Materials Today, 2021, 22, 100899.